Methods for Applying Accurate Digital PCR Analysis on Low Copy DNA Samples
نویسندگان
چکیده
Digital PCR (dPCR) is a highly accurate molecular approach, capable of precise measurements, offering a number of unique opportunities. However, in its current format dPCR can be limited by the amount of sample that can be analysed and consequently additional considerations such as performing multiplex reactions or pre-amplification can be considered. This study investigated the impact of duplexing and pre-amplification on dPCR analysis by using three different assays targeting a model template (a portion of the Arabidopsis thaliana alcohol dehydrogenase gene). We also investigated the impact of different template types (linearised plasmid clone and more complex genomic DNA) on measurement precision using dPCR. We were able to demonstrate that duplex dPCR can provide a more precise measurement than uniplex dPCR, while applying pre-amplification or varying template type can significantly decrease the precision of dPCR. Furthermore, we also demonstrate that the pre-amplification step can introduce measurement bias that is not consistent between experiments for a sample or assay and so could not be compensated for during the analysis of this data set. We also describe a model for estimating the prevalence of molecular dropout and identify this as a source of dPCR imprecision. Our data have demonstrated that the precision afforded by dPCR at low sample concentration can exceed that of the same template post pre-amplification thereby negating the need for this additional step. Our findings also highlight the technical differences between different templates types containing the same sequence that must be considered if plasmid DNA is to be used to assess or control for more complex templates like genomic DNA.
منابع مشابه
Digital PCR analysis of plasma cell-free DNA for non-invasive detection of drug resistance mechanisms in EGFR mutant NSCLC: Correlation with paired tumor samples
As the development of resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) has become an issue of concern, identification of the mechanisms responsible has become an urgent priority. However, for research purposes, it is not easy to obtain tumor samples from patients with EGFR mutation-positive non-small-cell lung cancer (NSCLC) that has relapsed after treatme...
متن کاملLightCycler qPCR optimisation for low copy number target DNA.
The LightCycler is a rapid air-heated thermal cycler which incorporates a fluorimeter for the detection and quantification of Polymerase Chain Reaction (PCR) amplified products. It provides real-time cycle-by-cycle analysis of product generation. Amplification occurs in glass capillary tubes. The products are detected using a fluorescent double stranded DNA binding dye or fluorescent probes. Ho...
متن کاملMolecular diagnosis of Mycoplasma spp. Arthritis by PCR
Background: Arthritis is one of the most common inflammatory diseases worldwide. It is characterized by symptoms such as systemic inflammation and autoantibody production. The molecular mechanisms in pathogenesis of arthritis are not fully understood. Studies show that many microorganisms, including Mycoplasmas, play a role in arthritis. The PCR method is a fast and accurate molecular method fo...
متن کاملNoninvasive detection of HER2 amplification with plasma DNA digital PCR.
PURPOSE Digital PCR is a highly accurate method of determining DNA concentration. We adapted digital PCR to determine the presence of oncogenic amplification through noninvasive analysis of circulating free plasma DNA and exemplify this approach by developing a plasma DNA digital PCR assay for HER2 copy number. EXPERIMENTAL DESIGN The reference gene for copy number assessment was assessed exp...
متن کاملNormalization of soil DNA extraction for accurate quantification of target genes by real-time PCR and DGGE.
The analysis of microbial communities in environmental samples requires accurate and reproducible methods for extraction of DNA from sample matrices that have different physical and chemical characteristics. Even with the same sample type, variations in laboratory methods can result in different DNA yields. To circumvent this problem, we have developed an easy and inexpensive way to normalize t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013